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ABSTRACT

The multiband method is developed for use in radiative transfer

problems. The essence of the method is to divide the frequency range

into both energy groups and cross section bands. Included in the formula-

tion are the effects of continuously varying (in space and time)

opacities, which leads to band-to-band streaming transfer terms. Several

numerical examples indicate the increased accuracy possible by using a

combination of groups and bands, as contrasted to groups alone.
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1. Introduction

In multigroup transport or diffusion calculations, Nikolaev for

(1)
neutrons and Stewart for photons

(2)
originated the idea of within each

group characterizing the neutrons or photons by the value of the total

cross section with which they interact. The underlying idea of their

approaches is to make full use of the predictions of various limiting

transport problems. For example, in neutron transport the neutron flux

varies inversely with total cross section in certain cases
(3)

. This

known variation allows an accurate calculation of multigroup constants in

these cases. Similarly, in photon transport (radiative transfer) Kirch-

hoff’s law tells us that re-emission at any frequency is given by the

(4)
product of the Planck distribution and the absorption cross section .

This implies that the Planck mean absorption coefficient is the proper

mean in the emission dominated case.

Aspects of Nikolaev’s and Stewart’s work have been combined to

develop the multiband method
(5)

which has been applied to a variety of

neutron and photon

attempt to improve

is accomplished by

problems(6). In the usual multigroup method one can

the transport model by using more energy groups. This

further subdividing each energy interval. In the multi-

group method neutrons or photons within each group all “see” or interact

with the same total cross section. In the multiband method each group is

further subdivided, not into smaller energy intervals, but rather into

total cross section ranges. In this model neutrons or photons within

each group can interact with more than one total cross section.

In this paper, the multiband equations, originally obtained and

applied within the neutron transport context, are considered for
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radiative transfer problems.

from one particular point of

cross sections are spatially

Section 2 derives the multiband equations

view in the simplest case of a medium whose

independent (e.g., a homogeneous, constant

temperature and pressure slab). The next section demonstrates that the

required multiband parameters can be obtained from available multigroup

photonics Planck and Rosseland mean opacities, which are the standard

(4)
opacities now in use . Section 4 considers a variety of simple problems

to illustrate the differences that one obtains using the multiband method,

compared to the usual multigroup method. Section 5 rederives the multiband

equations from another point of view, including the generalization to

spatially dependent cross sections (e.g., a multislab system with a temp-

erature gradient). Continuous variations of cross sections, such as

encountered in a strong temperature gradient, are much more extant in

radiative transfer problems than in the neutron context. The paper concludes

with a short section containing a few summary remarks.
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2. The Multiband Equations in the Simplest Case

Consider the time dependent equation of radiative transfer (or

neutron transport

~M(~,E,fi,t) +
v at

equation) which can be written in the form

fi*?I(;,E,;,t)+ @,E,t)I(~,E,~,t) = R(;,E,6,t) . (1)

of equations

~ aI (:,iit)
+ i“hg(u>t) + z*g(;,&t)Ig(>,~,t) = Rg(~,fi,t) , (3)

7
g

at

Here R is the total source given by, in the most general case,

R(?,E,fi,t)=
id”f ‘3’ Jdt’F(E’fi’>t’ + ‘J$t) ● ‘2)
o 4T

The independent space, energy, angle, and time variables are denoted by ;,

E, ~, and t, and I(;,E,;,t) is the specific intensity of radiation (neutron

angular flux). The particle speed is denoted by v (v = c = speed of light

for photons), and ZT(~,E,t) is the total collision cross section. The

function F(E’,~’,t’ + E,fi,t) is the transfer law, and written in this

general way is meant to encompass scattering (including induced terms),

delayed neutron production, fission, re-radiation, external sources, etc.

The multigroup equations are obtained from Eq. (1) by integration

over adjacent energy (i.e., frequency in radiative transfer) intervals

extending from E to E >g =1, 2, .... G. This yields the coupled set
g g+l

where Ig, Rg, or Z I is defined by integrating each of the corresponding
Tg g

energy dependent quantities over a group, e.g.,

3



‘g+ 1

Ig(~,~,t) =
J

dEI(&E,~, t) . (4)

E
g

The multiband equations are obtained

multiplying Eq. (1) by a weight function

w ‘ 6 [XT(E) -i]

in a similar manner by first

9 (5)

and then integrating Eq. (1) over both an energy range and a total cross

section range, with respect to z;. The result is a set of coupled equations

+ ‘Tgb
(:,d,t) gb= R (;,&t) , (6)

where I R or Z
gb’ gb’ Tgblgb

is defined by integrating each of the corresponding

energy dependent quantities over an energy group and total cross section

band, e.g.,

z
Tg,b+1 g+1

I (;,h,t) = fd<; [dE6 ZT(E) -
gb ~;]I(~,E,3,t) .

Z Tgb
E
g

(7)

Physically, the effect of the delta function is to only select those energy

intervals in the group within which the total cross section is between

‘Tgb
and x

Tg,b+l”
Therefore this integral is equivalent to collecting

together all those particles in a given energy interval (E ) that
g’ ‘g+l

interact with a given range of total cross sections (Z E
Tgb‘ Tg,b+l).

Figures 1 through 3 illustrate the procedures involved in dividing

an energy group (Eg, E~+1~ into four,total cross section bands. In figure 1

4
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the total cross section between energies E and E
g

is illustrated. In
g+1

addition, in this figure the total cross section range is divided into

four subranges, or bands. In figure 2 we illustrate the effect of applying

Eq. (7) to the third band. The effect of the Dirac delta

integration over a band of total cross section in Eq. (7)

only be non-zero contributions to the integral from those

which the total cross section is in the range XT3 to ZT4.

function and

is that there

energy ranges

will

in

The contributing

energy intervals are illustrated in figure 2 by the dark areas. The multi-

band method is thus equivalent to collecting together all energy intervals

in which the total cross section is in a given range, as illustrated in

figure 3, and applying the usual multigroup method to this reordered total

cross section. In this figure, x is a normalized, rearranged energy variable.

Eachof these bands is then characterized by average cross sections to define

the parameters in Eq. (6).

It is important to realize that the multigroup equations [see Eq. (3)]

and the multiband equations [see Eq. (6)] are identical in form and differ

only in the magnitude of the parameters, such as ZTg
versus Z

Tgb“
Therefore,

in principle

be solved by

codes. Once

intensity of

once these parameters are defined the multiband equations can

existing multigroup radiative transfer or neutron transport

the multiband equations have been solved to define the specific

radiation (neutron flux) in each band, the equivalent multi-

group quantities can be obtained by simply adding up the contributions

from all bands within each group,

Ig(;,fi,t)=
z

I (;,fi,t) .
gb

(8)

b
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One important characteristic of the multiband method is that if we define

the equivalent multigroup total cross section in the normal manner as the

ratio of collisions to radiative intensity (neutron flux), i.e.,

‘Tg =

we can see that even starting

‘ections ‘Tgb’
the equivalent

z I (;,fi,t)
‘Tgb gb

b
. (9)

z I (;,?i,t)
gb

b

from spatially independent multiband cross

multigroup cross section Z
Tg

may be

angular, and time dependent due to the variation in

(neutron flux) within each cross section band. The

will be illustrated in Section 4.

the radiative

importance of

spatially,

intensity

this effect

.

.

6
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3. The Multiband Parameters

The direct use of Eq. (7) to define multiband parameters would

complicated and expensive. However, there is a simple procedure that

be

may be

used to derive the required multiband parameters directly from existing

library data, such as Planckian and Rosseland means. In order to accomplish

this we will first illustrate that the normal definition of multigroup

cross sections in terms of an integral over energy can be exactly transformed

into an integral over total cross section. This point is not surprising since

it merely illustrates that one can either integrate over the energy interval

in the Riemann sense, or over the total cross section range in the Lebesque

sense. However, it will introduce the concept of a band weight or probability.

Consider the definition of a multigroup cross section, i.e.,

c

z.
lg

‘g+l

I dEXi(E)I(~,E,_&t)

. ‘~
E
g+1

(lo)

J 6dE I(r,E, ,t)

E
g

.th
where Z:(E) is the cross section for the 1 interaction (e.g., scattering,J.
absorption, etc.), and I(;,E,;,t) is the weighting

the specific intensity of radiation (neutron flux).

used in photon and neutron transportcalculations is

product of two terms,

I(;,fi,E,t)= S(E)W~T) ,

function which approximates

The weighting function

usually written as the

(11)



where S(E) is the energy dependent “envelope~’of the weight function, and

W(~T) is a cross section dependent self-shielding factor. Specifically,

for photons and neutrons the weighting functions most often used are

shown in Table 1. In this table, M(E) is the neutron energy dependent

envelope function which is a composite Maxwellian, l/E, and fission or

fusion spectra
(7)

; BV(T) is the blackbody distribution(4), ZT is the total

cross section, Z. is a cross section representing effects of other

materials and spatial leakage, and N is an integer which indicates the

angular Legendre component of the neutron flux being considered. From this

table it may be seen that unshielded neutron cross sections are analogous

to Planckian mean cross sections for photons, in the sense that both use

the same self-shielding factor (W = 1). Similarly, the totally self-shielded

neutron cross sections (X. = O, N = 1) are analogous to Rosseland mean cross

sections for photons, in the sense that both use the same self-shielding

factor (W = l/ZT). Without introducing the concept of self-shielding, the

two extremes of unshielded/Planckian on the one hand and totally shielded/

Rosseland cross sections on the other hand can be shown to be equivalent

to conserving either reaction rates or distance to collision, respectively.

In the following development, it is assumed that the weighting function

is separable according to Eq. (11). However, it is fairly straightforward

to show that the following results apply to any weighting function; the

separable function is used to simplify the following derivations and to

illustrate how this approach directly applies to the weighting functions

normally used to define photon and neutron multigroup cross sections. The

definition of the multigroup cross section, Eq. (10), may be written in the

equivalent form

8



z. =
lg

E
(12)

If the integrations over X; are performed first we return to the normal

definition of the group averaged cross section, given by Eq. (10). However,

if the integrations over E are performed first we obtain the equivalent

equation

where we have defined

Eg+1

j[
dE6 Z; -

1
ZT(E) S(E)

E
g

p(z;) = Eg+l
>

!
dES(E)

‘g

g+ 1

‘i(x~)p(z~) .> [,Eti Et - 1ZT(E) Zi(E)S(E) .

E
g

9

(13)

(15)



Equations (14) and (15) serve to define the total cross section probability

density, p(Z~), and the cross section for each reaction i as a function of

the total cross section, Xi(x;). From its definition, it can be seen that

p(x~)d~~ is roughly a normalized probability distribution that defines the

probability of the total cross section being within d~~ of .x;within the

energy interval (E~>Eg+l)~ This interpretation ofp(~~) would be precise

if S(E) = 1. It is important to realize that since the definition of the

group averaged cross section as an integral over the total cross section

[see Eq. (13)] has been derived from the usual definition over energy [see

Eq. (10)] merely by introducing definitions, but no approximations, the two

forms are exactly equivalent.

The advantage

group averaged cross

comparing the relative

to the neutron problem

of using the cross section dependent form to define

sections according to Eq. (13) may be demonstrated by

11

difficulty of evaluating the two integrals appropriate

Eg+1

=
-1

dE— 1
E[XT(E) + Z

E ol_ ‘
(16)

and

●

i

(17)

10
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✎

where in this example p(X~) is given by Eq. (14)

concrete example, we consider the Pu - 239 cross

300 ev. Figure 4 showns these microscopic cross

and it is clear that in the energy-cross section

with S(E) = l/E.

sections between

As a

40 and

sections in barns (b),

plane XT(E) + Z. is a

rapidly varying,

data points. By

*
section plane ZT

of P. Therefore,

fairly complicated function represented by thousands of

contrast, we see in Figure 5 that in the probability-cross

+x o would be a simple monotonically increasing function

once the total cross section probability density is

known, integrals in the probability versus cross section plane may be

performed very efficiently for a variety of self-shielding functions, W(z;).

Another advantage of using the probability versus cross section plane is

the increased physical insight that is obtained by allowing one to examine

the importance of specific cross section ranges [see Fig. 5] instead of

having to deal with hundreds of cross section minima and maxima. Although

the above example is drawn from neutron transport, the same considerations

may be even more important in radiative transfer involving lines. Radiative

transfer lines can be narrower and more numerous than

In order to define the multiband parameters the

the multigroup cross section, Eq. (13), as

section range is replaced by a quadrature,

an integral

i.e.,

z. =
lg

E ‘ibw(z~b)pb
b

~w(zT#?b “
b

neutron resonances.

exact definition of

over the total cross

(18)

11



This is of course equivalent to

ability p($ by a set of Dirac

representing the total cross section probab-

delta functions

[ 1Pbd z; - xTb . (19)

Once the band weights pb are known, they may be used in Eq, (18) with any

weighting function W(ZT) to define group averaged cross sections, Z.
lg”

However, we will use the reverse procedure. If we know a set of group

averaged cross sections obtained by using a variety of weighting functions

w(~T), Eq. (18) may be solved to define the band weights pb and cross sections

z. This is the procedure that we shall use here to define multiband
lb“

parameters. Specifically, ifwe are given Zi(Wg) and W%, 9 = O, 1, 2, ....

for a given group, we

zi(wL) =

to define Xib and pb,

then must solve the set of equations

z ‘ibwg(XTb)pb

b
> k =0, 1, 2, ....

E ‘#Tb)pb

b

b=l, 2, ....

Specifically, if we use

WA(XT) = 1/$ ,

(20)

This is a classical moments problem.

E =0, 1, 2, .... (21)

,

.

(8)
this problem becomes a Hausdorff moments problem .

The simplest illustration of this procedure to consider two bands and

apriori fix the band weights and solve for the band cross sections zT1 and ZT2.

12
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Since in general there is no reason to do otherwise, we use equal band

weights (pl = p2 = 1/2). We assume that the Planckian and Rosseland group

cross sections are known. Applying Eq. (20) then gives the two equations

(~ .ET1+ q ,‘P=2 (22)

(23)

where X and Z are the Planckian and Rosseland means
P R

, respectively. Solving

(9)
‘or ‘T1 and ‘T2 gives the simple results

‘T1 = ‘P
1-

[

‘T2=ZP1+

1/21>

)
1/2

1
‘R-—

‘P
.

(24)

(25)

If these two band parameters are used, one is guaranteed to obtain the correct

solution in both the Planck and Rosseland limits, i.e., in the optically

thin (emission dominated) and optically thick (near equilibrium) situations.

However, away from these limiting situations, numerical calculations indicate

that the 2-band, G group method is not substantially better than the 2G group

method. It appears that the apriori assignment of

restrictive.

Accordingjit appears that for the multiband

full potential, the weights for the two bands must

equal weights is too

method to acheive its

also be treated as

variables. This allows us to conserve an additional cross section, which

13



we somewhat arbitrarily take to be the so-called “super-Rosseland”,or

l/~~ weighted cross section. This choice leads to very good numerical

results, examples of which are discussed in the next section. In this

scheme then, we solve for the two band parameters using the weighting

functions and multigroup cross sections given in Table II. We obviously

have four unknown parameters zTl$ ‘T2~ PIS and p2, and we require four

equations to uniquely define these parameters. These are:

1 = P1 + p2,(a normalized distribution) ,

‘Tlpl + ‘T2p2

‘P =
(conservationof Planck mean) ,

P1+P2 ‘

P1 + P2

‘R=pl p2 ‘
(conservationof Rosseland mean) ,

—+~,“

(26)

(27)

(28)

‘T1 ‘T2

PI P2

—+q
‘T1

% = pl p2 ‘
(conservationof super-Rosseland mean) . (29)

——
22 + 12
T1 T2

Here 2S is the super-Rosselandmean, and Zp and ZR are as previously defined.

By inspection of Eqs. (26) through (29) we can see that the parameters “

are not uniquely defined. That is, we may exchange the parameters for the

two bands and still obtain a solution.
w

The parameters do not become unique

until we introduce an ordering into the parameters, such as z
T1 < ‘T2”

This

leads us to believe that the two band parameters will be related to the roots

of a quadratic equation. We make the change of variables

14
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~+6, 1 1
P~=.2 ‘Tl=~=— A+B’ (30)

(31)

This change of variables immediately satisfies our first equation, and the

remaining three equations may be solved to find

1 - AER
6 =—

2BZR ‘

A=& [1‘P - %

S ‘P - ‘R ‘

B2=~ 1
[

2

‘RXP 1-2A%+‘RZPA “

(32)

(33)

(34)

As expected, there are two possible solutions for B, corresponding to the

positive and negative roots of B2. This is the result of the non-uniqueness

of the solution without an ordering. From the definition of X1, X2, and 6

in terms of B, it may be seen that choosing the positive or negative value of

B yields the same two band weights and band cross sections with the pairs

(pl, ‘T~) ad (pz, ‘T2) exchanged. From the definitions ofXl, X2, ~T1, and

z
T2‘

choosing B positive corresponds to introducing an order such that

E <z
T1 T2”

The above algorithm will always produce physically acceptable

parameters (positive band weights and band cross sections) as long as

(3s)

15



The only time

independentof

this inequality is not satisfied is when the

(6)
energy across the group . In this case, of

cross section is

course, only one

band is needed in thegroup, or both band cross sections are set equal to the

energy independent value. *

All of the parameters required to define two band cross sections and
P

weights have now been uniquely defined in terms of the Planckian, Rosseland,

and super-Rosseland cross sections for each group. The significance of

using these three cross sections may be appreciated by comparing Eqs. (9)I

I
and (20). If, in fact, the radiative intensity is equal to the weighting

I
I

I function, i.e.,

I
gb ‘pb/l:b , ‘=0,1,2 , (36)

the equivalent group averaged cross section will be the Planckian (!L= O),

Rosseland (k = 1), or super-Rosseland (1 = 2) mean. In particular, this

implies, and it will be illustrated later, that the effect of explicitly

conserving the cross sections in these limiting cases is that for optically

thin media the equivalent group averaged cross section will reduce to the

Planckian average, and in a near equilibrium thick medium it will reduce

to the Rosseland average. For intermediate cases, the group average will

slide between these two extremes.

“

.
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4. Numerical Examples

In order to illustrate the effect of using two band cross sections

instead of Rosseland or Planckian means, we first consider the results

for a simple one group problem of radiation impinging upon a totally

absorbing (no re-emission) halfspace, as shown schematically in figure 6.

In this case the equation to solve is

~ 3N(x,E,u)
ax + XT(E)N(X,E,V) = 0 , (37)

with the intensity N specified at x=O, i.e.,

N(O,E,!J)= S(E,V). (38)

The exact solution is, of course, exponential attenuation independently

at each energy. We take the source S(E,P) to be independent of energy,

and a beam perpendicular to the surface, and normalized to one “particle”

incident per unit time and area.

For this source, the contribution of any energy to the integral of

N(x,E,lJ)over energy at any point x depends only upon the total cross

section %(E). This cross section will be assumed to have a simple

linear variation across the energy range of interest,with

%Wg)=lo ;Z@g+l]=O. l (39)

It should be emphasized, however, that the solution will be the same for

any cross section which has the sane cross section probability density

as that corresponding to Eq. (39). For example, the solution for each

of the total cross sections variations shown in Figure 7 will be identical.

Figures 8 and 9 illustrate the results of an exact calculation

compared to using Planckian, Rosseland, and two-band calculations for the

photon intensity

17



1 E E

[J

g+l g+1

No (X) : dp~ dEN(x,E,p) =

\

(40)dE exp[-ZT(E)x],

-1 E
g E

g

and the absorption or reaction ~ate
‘1

[

‘g+ 1

dEXT(E)N(x,E,u)

~

~(E) exp [-ZT(E)X] .

(41)

From Figure 8 we can see that the Planckian intensity rapidly deviates

from the

solution

deviates

exact solution. The Rosseland intensity stays close to the exact

deeper into the medium than the Planckian, but eventually it too

from the exact solution. By comparison, the two band solution

approximates the exact solution quite well over the entire range of x

shown in Figure 8.

From Figure

Rosseland mean.

may see that the

9 we can see one of the problems associated with using a

At x=O, by taking the ratio of Eqs. (40) and (41), we

exact group averaged cross section is the Planckian

average. The use of the Rosseland average allows the radiation to

propogate further into the medium [see Fig. 8] by reducing the cross

section and therefore the reaction rate for the group. In the case

presented here Figure 9

average is to lower the

at the point of highest

In this example we

illustrates that the effect of using the Rosseland

absorption or reaction rate by a factor of two

reaction rate, x=O.

are being somewhat unfair to the Planckian and

Rosseland solutions by comparing to a two band solution, since the two

band solution is equivalent to solving two equations. Furthermore,none

ld

.

.
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of the methods exactly reproduce the exact answer. It is reasonable to

inquire as to what happens if we subdivide the energy interval Eg to E
g+1

into successively more groups. For a fair comparison we will use the same

number of equations for each method; e.g., we will compare a 10 group,

2 band solution to a 20 group Rosseland or Planckian solution. Figure 10

illustrates the results obtained for each method by using progressively

more equations. In this figure for each method the ratio of the approximate

to the exact solution at x=O is plotted versus the number of equations used.

From Figure 10 we can see that in order to obtain a solution using Planckian

or Rosseland averages to the same accuracy as a two band solution, one

needs to use an order of magnitude more equations. In particular, the

dotted line in this figure shows that a 1 group, 2 band solution is

comparable in accuracy to a 40 group Planckian calculation. (For a

Rosseland calculation, about 25 groups is required]. This is a charac.

teristic that the two band solution exhibits in many applications; the

two band solution can be very accurate using only a few groups.

In the opposite extreme to the case just considered we may investigate

what happens in a purely scattering (total re-emission) medium. In this

case we will consider a steady state problem with isotropic radiation

impinging upon a plane slab of thickness x, as shown schematically in

Figure 11. By conservation, the incident radiation will either be

transmitted through the slab or reflected since no radiation is absorbed.

Figure 12 presents the results obtained for the transmission and albedo

as the slab which is varied between 0.01 and 1000 Planckian mean free

paths. For this example the Rosseland mean was assumed to be 0.1 times

the Planckian mean. What we expect is that for optically thin slabs the

19



solution will be that corresponding to the use of Planckian means, and

for thick slabs that corresponding to the use of Rosseland means. Figure

12 clearly illustrates this characteristic of the two band method; it

smoothly slides between the Planckian and Rosseland correct limiting

cases.

20
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5. The Multiband Equation in the General Case

In deriving the multiband equations as given by Eq. (6), we have

tacitly assumed that the total cross section, and hence the band para-

meters, are independent of space and time. More specifically, the limits

*
on the ZT integrations in definitions such as Eq. (7) were assumed

constant. This allowed the cross section integration to be passed

through the space and time derivatives in the equation of transfer. If

the total cross section is not constant in space and time, due to tempera-

ture and/or pressure gradients, the multiband equations are somewhat more

complex. In particular, an additional term, representing streaming band to

band transfer, is present. In this section, we reformulate the multiband

method to include this effect. We also discuss the conditions to be

applied at an interface between two similar, as well as two dissimilar,

materials.

To provide an alternative to Section 2, our approach here will be

less formal and more concrete.

city, we deal with the simplest

For this reason,

time independent

as well as for simpli-

equation of transfer,

~I(s,v)
as

= -XT(S,V) [I(s,v) - B(v)] , (42)

where v is the photon frequency (E = hv), s is the spatial variable

along the photon flight direction, and B is the Planck function. General-

ization of what follows to time dependence and a general source term is

in Eq. (1) presents no problem. We also, for simplicity of presentation,

restrict the discussion to the two band method.

In the two band formulation, we envision a cross section behavior

between the group limits v and v as shown in Figure 13. In this
g g+ 1
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figure we

by an odd

We define

given by

have denoted the frequency at the

index (2i+l) and denoted the left

the fractional measure of the low

th
right edge of the i “line”

edge by an even index (2i).

cross section (XT1) as pl,

where Av Z v Similarly, the fractional measure of the high
g+l - ‘g”

opacity is defined to be p2 and given by

1p2EG
z

(v2i+l - ‘~i) -

i

Clearly p1+p2 = 1. We define the corresponding band intensities as

11(S)

12(s)

To form the first band

over the first band (those

-z/‘2i
= dvI(s,v) ,

i
‘2i-l

‘Zi+l
❑-z~ dvI(s,v) .

i
‘2i

equation for ll(s), we integrate Eq.(42)

frequencies corresponding to ZT1) to get

(43)

(44)

(45)

(46)

fv2i

x] dv ~I(s>v)
as [ 1

= -~T1(S) ll(s) - pl(s)b~4 , (47)
;.,

.

*

L
“2i-1

where
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Physically, b is

contained in the

‘g+l

bE--&-
/

dvB(v) . (48)

the fraction of the energy in a black body spectrum

group under consideration. In obtaining the last term

in Eq.(47)an assumption has been made that the “lines” are randomly

distributed over the group, or alternately, that the group is narrow

enough so that B(v) does not vary appreciably over the group. To properly

interchange the orders of integration and differentiation in Eq.(47), we

need take i~to account that v2i and v2i_1 depend upon s. We then obtain

ail(s) - Z[ av2i
I(s,v2i) ~- 1av2i-1 =

I(s,v2i_1) as
as

i

[

4

1=-ZT1(S) ll[s) - Pi(s) ~ .

A similar development for the second band leads to the result

N avzi+l av .
a12(s) - I(s,v2i+l) as - I(s,v
as 1

Zi) + =

i

[
= JT2(s) 12(s)

(49)

4

1
- p2(s)b ~ . (50)

the radiative density at the lineIt remains to specify I(s,vi),

edges. The term involving these densities in Eqs. (49) and (50) represent

the transfer between bands as

Eqs.(49) and (50) these terms

the fact that a loss from one

the photons stream. Clearly if we add

cancel, which is just a manifestation of

band is a gain to the other. That is,
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streaming removes no photons from the group—it only rearranges the

photons between bands. To specify I(s,vi), we procedd as follows. we

begin by treating transport within a given material, in which the cross

section is a function of temperature and pressure. The cross section

at position s is “correlated” to the cross section at s+ds in the sense

that a

lines,

temperature and/or pressure gradient will broaden

but the line positions will not abruptly change.

or sharpen the

That is, in a

given material the cross

temperature and pressure

temperature and pressure

section is a continuous function of s if the

are continuous. In the two band model, the

s dependence give rise to the s dependence

of thev.. We assume that a given change in temperature and pressure
1

affects all of the lines the same; i.e., all lines either broaden or

sharpen. For concreteness, let us assume that in going from position s

to position s+ds that the temperature and pressure changes are such that

all lines sharpen. This implies

a~ (v2i -v 2i.1) > 0, all i,

and hence from Eq.(43) we see

aQ!A.>().
as (52)

Since all lines act alike, we can for simplicity draw a picture

for a single line as in Figure 14. The solid line gives ZT(S,V) at s,

and the dotted line shows the sharpening that occurs at s+ds. From this

picture we see that a portion of the intensity from band 2 has been

transferred to band 1, since band 2 is now smaller. That is, a part

of what was in band 2 at s now finds itself in band 1 at s+ds. Hence the

●

✎

?

.

24



proper density I(s,vi) to use in Eqs.(49) and (50) is the band 2 intensity

since it is that which is transferred. Accordingly, for ap,/as > 0,

i

41 L.— = -XT1(s)[I1(s)-pl(s)bWI >as p;(s) %

I
1

i
I

we should use

12(s)
I(s,vi) =

P2(s)Av

in which case Eqs. (49) and (50) become

aI, (s) I?(s) ~P,(s)

(53)

(54)

a12(s) 12(s) 3p2(s) 4
-— = -ZT2(s)[12(s)-p2(s)b~] .as P2(s) as

(55)

Equations (54) and (s5) are the two band equations. It must be emphasized

that these equations only hold for apl(s)/as > 0 within a given material.

We shall shortly write down the corresponding equations for apl(s)/3s < 0,

and later on we will consider what happens at an interface between materials.

We note that the two band equations are formally identical to the usual two

group equations, with an additional term in each equation accounting for trans-

fer between bands.

One can ask what happens to the band intensities at discontinuity in pl

and p2, due to a discontinuity at temperature and/or pressure in a given

material. To determine this, we rewrite Eq. (55) as

and add Eqs, (54) and (55) to obtain

(56)

(57)
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Integrating Eqs. (56) and (57) across the discontinuity, we find

k)‘H ; ‘1r12r=‘1r12)+‘
(58)

where - and + refer to the left and right, respectively, of the discontin-

uity. That is, the band 2 density (12/p2Av) and the total intensity

(11+12) are continuous across a discontinuity in PI and P2” Again, we

emphasize that this result corresponds to a discontinuity in PI and P2 within

a given material and for ~pl/3s > Oj i.e., P1+ > Pi-”

Equation (58) suggests that the band 2 equation may be simpler if

written in terms of the density rather than intensity.
We define

$1 = l~/Pl ; $2 = 1,/% “ (59)

In terms of these variables, Eqs. (54) and (55), the two band equations, be-

come

(60)

w, 4

-xT*[$,-b *I “ (61)—=
as

Equations (60)

densities. We

ence to +l.

and (61) are the two band equations written in terms of

note that the equation for $2> ‘q” (61)’ Contains
no refer-

All of our results have been

In the complementary case, apljw

intensity equations

obtained under the assumption ~P1/~s > 0“

< 0, similar analysis gives the two band

a12 II w2 acT4____ —= —1 s-XT2[I,-PJ 4~a5 PI as

(62)

(63)

8

,
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and the two band density equations

Wz
%--- A (4*-I+

+ P2

The final item we consider is

3P.2 4
—=
as

-ET2[$2-b~] .

(64)

(6S)

what happened at an interface between

two dissimilar materials. We assume photons are flowing from left to right,

and denote the band intensities just to the left of the interface by 11- and

12 “
We wish to determine 11+ and 12+, the intensities just to the right

of the interface. The underlying assumption we make is that the cross sec-

tionsfor the material to the left of the interface are uncorrelated from

those for the material to the right of the interface. That is, the posi-

tions of the lines in one dissimilar material are uncorrelated to the posi-

tions of the lines in any other material. Then the photons in band 11- see

both bands as they cross the interface, in proportion to the width of the

bands on the plus side. The same is true, of course, for the photons in

band 2. Hence all photons which cross the interface immediately populate the

two bands on the plus side proportional to the widths of the plus side bands.

We have

*1+
= (11-+12-)pl+,

12+
= (11-+12-)p2+ .

(66)

(67)

As an example of spatially dependent band parameters, we consider the

steady state problem of a zero temperature slab (no re-emission) of thick-

ness L with a perpendicular beam of radiation impinging upon the left

boundary, and a vacuum at the right boundary. The radiation intensity will

be non-zero only in thep= 1 direction, and hence
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I(z,v,u) = I(z,V)6(1-V) , (68)

where v is the cosine of the angle between the photon flight direction and

the positive z axis. The transport equation for I(z,v) is

aI(z,v)
az

+ ZT(Z,V)I(Z,V) = O . (69]

We scale the frequency variable

est encompass O < v < 1, and we

tribution, normalized to unity.

The cross section is assumed to

point z as shown in Figure 15.

such that frequencies in the group of inter-

assume a flat (in frequency) incident dis-

The boundary condition on Eq. (69) is then

I(O,V) = 1 . (7@)

have a two piece histogram behavior at any

We measure distance such that the smaller

opacity of the histogram has a value of unity. The heights unity and o of

the histogram are taken as independent of z, but the breakpoint between the

two values varies with z, and is denoted by p(z) in the figure. We set

as a concrete

For this

tion, as well

p(z) = z/L (71)

example.

problem, we compare the exact solution with the two band solu-

as the one and two group Planck and Rosseland treatments. In

particular, we compare the transmission through the slab, given by

Since the problem

tained. Omitting

J
1

T= dvI(L,v) . (72)
o

is purely absorbing, the exact solution is easily ob-

the straightforward detail, the result is

e-L-e-oL
T
exact = (0-l)L “

(73)

In the two band treatment, it is clear how to choose the band parameters.

We have
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PI = z/L ; p2 = l-z/L ,

‘T1=l; ‘T2=a”

The two band equations are, assuming o > 1 [see Eqs. (60) and (611]

a+2
—+dJ2=o Yaz

with boundary conditions

VI(O) = $2(0) = 1 .

The solution is

$1(2) =—
-z-e+sz

(0:1)z [e 1>

+2(z) = e-oz ,

which leads to a transmission

~-L_e-aL
T
two band = (u-l)L “

Comparison of Eqs. (73) and (81) shows that the two

the exact result for this example.

In contrast, the usual multigroup method using

Rosseland means cannot give the exact result with a

(74)

(75)

(76)

(77)

(78)

(79)

(80)

(81)

band treatment gives

either Planckian or

finite number of groups.

For comparison, we have considered the one and two group results. Omitting

the algebraic detail, the results are (the two group results correspond to

two equal size groups):

T
one group-p

= exp[-L(cJ+l)/2],

T
CJLin o

= exp[-
one group-R (0-1) 1’

(82)

(83)

29



T
two group-P

=#exp[-(o+3) L/4] + exp[-(30+l)L/4]}

T = * exp[-
(o-l+a in cl)Ll

two group-R 2(0-1)

+*exp[-
(a-1+ in a)uLl

2(0-1) “

9 (84)

(85)

Figures 16 through 18 plot Eqs. (82) through (85), ratioed to the

two band (exact) result, as a function of slab thickness L for three dif-

ferent values ofo (2, 7, 20). It is clear from these results that one

or two group Planckian or Rosseland calculations can be significantly in-

ferior to a two band calculation. For this example, the latter is exact,

although this is not true in general, of course. The error in the multi-

group calculations becomes greater as a increases, which is a manifestation

that the problem is becoming increasingly non-gray as o increases.
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6. Concluding Remarks

The multiband method for spatially independent cross sections,

as described in Sections 2 and 3, has been very successfully used in

neutron transport calculations. Because of the strong similarity of

the equation of radiative transfer to the neutron transport equation,

one would expect the multiband method to be equally applicable to

radiation flow problems. The extension of the method to spatially

dependent cross sections, as described in Section 5 is a new idea which

has not been fully developed nor tested numerically for any real problems.

This extension should be particularly applicable to radiative transfer

problems, but also has application in neutron transport (spatially

dependent Doppler effects). We expect to explore this general

formulation, and give numerical experience, diffusion theory formulations,

Monte Carlo implementations, etc. in a future publication.

NOTICE

This report was prepared as an account of work sponsored by the United
States Government. Neither the United States nor the United States
~patment of Energy, nor any of their employees, nor any of their

contractors, subcontract tors, or their employees, makes any warranty,
express or implied, or assumes any legal Iiabilh y or responsibilityy for the
accuracy, completeness or usefulness of any information, apparatus,

product or process disclosed, or represents that its use would not infringe
privately-owned rights.

Reference to a company or product name does not imply approval or
recommendation of the product by the University of California or the U.S.
Department of Energy to the exclusion ot’others that may be suitable.
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Table I

Weighting Functions for Photon

and Neutron Transport

Unshielded Self-shielded
Particles (Planckian) (Rosseland)

Photons BV(T) ~ ~Bv(T)
—

‘T ~T

Neutrons M(E) M(E)

[zT(E) + ZO]N

*
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Table II

Weighting Functions and Cross

Sections in the Two-Band Treatment

W(ET) Cross Section

1 Planckian or unshielded

I/zT Rosseland or totally
shielded

l/z; Super-Rosseland or
totally shielded
radiative flux
(neutron current)
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Fig. 1 Total Cross Section (4 cross section bands)

36



‘T1rll

/’1 !“..
—

tg+l

E
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Fig. 16 One and Two Group Results for u = 2
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